- Relier le caractère non total d'une transformation à la présence, à l'état final du système, de tous les réactifs et tous les produits.
- Déterminer le sens d'évolution spontanée d'un système et déterminer un taux d'avancement final à partir de données sur la composition de l'état final et le relier au caractère total ou non total de la transformation.
- Justifier la stratégie de séparation des réactifs dans deux demi-piles et l'utilisation d'un pont salin.
- Modéliser et schématiser, à partir de résultats expérimentaux, le fonctionnement d'une pile et déterminer sa capacité électrique.

Chapitre 12

Evolution spontanée d'un système chimique

I. Etat final d'une transformation chimique

I.1 Transformation Totale ou Partielle

Une transformation est dite totale, lorsque le réactif limitant est entièrement consommé.

Elle est symbolisée par une simple flèche : →

- L'avancement final x_f = x_{max}
- Exemple: les réactions d'oxydo-réduction sont, en général, totales: $Cu^{2+}_{(aq)} + Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$

Une transformation est dite non totale, lorsqu'aucun des réactifs n'est entièrement consommé.

Elle est symbolisée par une double flèche : \leftrightarrow En effet la réaction peut se dérouler dans les 2 sens.

- L'avancement final x_f < x_{max}
- A l'état final d'une transformation non totale, les quantités de matière n'évoluent plus : le système est dans un état d'équilibre

I.2 Taux d'avancement final

Le taux d'avancement final τ_f mesure la fraction du réactif limitant qui a réellement réagi :

$$\tau_{r} = \frac{x_{f}}{x_{max}} \leftarrow \text{avancement final (en mol)}$$

$$= x_{f} \quad \text{avancement maximal (en mol)}$$

Si τ_f < 1 la transformation est non totale

Si $\tau_f = 1$ la transformation est totale

 X_{max} et X_f se déterminent grâce au tableau d'avancement :

- X_{max} en faisant l'hypothèse que la transformation est totale

- x_f grâce à la quantité d'un réactif ou produit à l'état final

II. Quotient de réaction et constante d'équilibre

II.1 Equilibre chimique

Soit l'équation chimique suivante : $\mathbf{a} \mathbf{A}_{(aq)} + \mathbf{b} \mathbf{B}_{(aq)} \longrightarrow \mathbf{c} \mathbf{C}_{(aq)} + \mathbf{d} \mathbf{D}_{(aq)}$

La réaction dans le sens direct conduit à la disparition des réactifs. La vitesse volumique de disparition de A vaut : $v(disp) = -\frac{d[A]}{dt}$

La réaction dans le sens indirect conduit à la disparition des produits et formation des réactifs. La vitesse d'apparition du réactif A vaut $v(app) = \frac{d[A]}{dt}$.

Lorsque la vitesse d'apparition de A est égale à sa vitesse de disparition, l'équilibre dynamique est atteint : $\mathbf{v}(disp) = -\frac{\mathrm{d}[A]}{\mathrm{d}t} = v(app) = \frac{\mathrm{d}[A]}{\mathrm{d}t} \Rightarrow \text{\'equilibre dynamique}$

II.2 Quotient de réaction Qr

Le quotient de réaction Qr est égal à :
$$Q_r = \frac{\left(\frac{[C]}{c^0}\right)^c \cdot \left(\frac{[D]}{c^0}\right)^d}{\left(\frac{[A]}{c^0}\right)^a \cdot \left(\frac{[B]}{c^0}\right)^b}$$

• Concentrations en mol.L⁻¹; c° = 1,0 mol.L⁻¹; Q_r sans unité

• L'expression de Qr simplifiée :
$$Q_r = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}$$

• Par convention, l'eau ,solvant, n'intervient pas dans l'écriture du quotient de réaction, même si elle figure dans l'équation de réaction.

Il en est de même pout toute espèce solide!

Exercice: déterminer l'expression du quotient de réaction Qr correspondant à l'équation chimique suivante:

$$Cu(OH)_{2(s)} + 2H_3O^+_{(aq)} \stackrel{\longrightarrow}{\longleftarrow} Cu^{2+}_{(aq)} + 4H_2O_{(l)}$$

II.3 Etat d'équilibre

Lorsqu'un système chimique, siège d'une transformation partielle, atteint un état d'équilibre chimique, le quotient de réaction Q_{req} est égal à la constante d'équilibre K.

Soit l'équation chimique suivante : a $A_{(aq)} + b B_{(aq)} \implies c C_{(aq)} + d D_{(aq)}$

La constante K d'équilibre vaut :

$$\frac{\left(\frac{[C]_{eq}}{c^0}\right)^c \cdot \left(\frac{[D]_{eq}}{c^0}\right)^d}{\left(\frac{[A]_{eq}}{c^0}\right)^a \cdot \left(\frac{[B]_{eq}}{c^0}\right)^b}$$

En simplifiant l'expression

$$K = Qr_{eq} = \frac{([C]_{eq}^{c}[D]_{eq}^{d})}{([A]_{eq}^{a}.[B]_{eq}^{b})}$$

Attention:

- la constante d'équilibre K ne dépend pas des concentrations initiales mais uniquement de la température.

- L'indice "eq" signifie qu'il s'agit des concentrations des espèces chimiques lorsque l'équilibre chimique est atteint.

- Plus la constante d'équilibre est élevée plus l'avancement final x_f tend vers x_{maX}

Exemple:

$$Cu^{2+}_{(aq)} + Zn_{(s)} \longrightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$$

$$Cu_{(s)} + Zn^{2+}_{(aq)} \implies Cu^{2+}_{(aq)} + Zn_{(s)}$$

la constante d'équilibre de cette réaction est :

la constante d'équilibre de cette réaction est :

$$K = \frac{[Zn^{2+}]_{(eq)}}{[Cu^{2+}]_{(eq)}} = 10^{37}$$

$$K' = \frac{[Cu^{2+}]_{(eq)}}{[Zn^{2+}]_{(eq)}} = 10^{-37}$$

II.4 Sens d'évolution spontanée d'une réaction chimique

Soit l'équation chimique suivante : $\mathbf{a} \mathbf{A}_{(aq)} + \mathbf{b} \mathbf{B}_{(aq)} \stackrel{1}{\rightleftharpoons} \mathbf{c} \mathbf{C}_{(aq)} + \mathbf{d} \mathbf{D}_{(aq)}$

Si Qr < K, il n'y a pas assez de produits. Il faut donc que la réaction chimique se produise dans le sens direct (sens 1).

Si Qr = K : l'équilibre est atteint, les concentrations des espèces chimiques ne varient pas

Si Qr > K, il y a trop de produits, la réaction se déroule dans le sens inverse (2), des produits sont consommés.

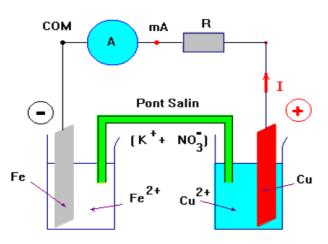
Exercice: Dans un bécher, on introduit:

- 0,15 g de poudre de fer ;
- 0,15 g de poudre de cuivre ;

- 25 mL d'une solution contenant des ions Fe²⁺ de concentration $c_1 = 0,10$ mol·L⁻¹;
- 25 mL d'une solution contenant des ions Cu^{2+} de concentration $c_2 = 0,10$ mol·L⁻¹;

Il se produit la réaction : $Cu(s) + Fe^{2+}(aq) \iff Cu^{2+}(aq) + Fe(s)$.

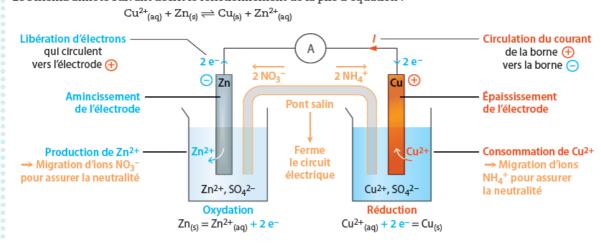
Sa constante d'équilibre est égale à $K = 1.0 \times 10^{-26}$.


Calculer le quotient de réaction à l'état initial Qr,i et en déduire le sens d'évolution spontanée du système.

III. La pile : transfert spontané d'électrons

III.1 Transfert d'électron

- Une réaction d'oxydo réduction modélise une transformation chimique au cours de laquelle des électrons sont échangée entre un oxydant et un réducteur appartenant à 2 couples différents.
- Le transfert est DIRECT si l'oxydant et le réducteur sont en contact direct (entre réactif dans une solution)
- Le transfert se fait grâce à un circuit extérieur si l'oxydant et le réducteur sont placés dans des compartiments séparés (1/2 piles)


III.2 Qu'est-ce qu'une pile ?

- Une pile est constituée de 2 compartiments distincts : les 1/2 piles
- Ces 2 compartiments sont reliés par un pont salin : il permet la fermeture du circuit électrique et l'électroneutralité des 1/2 piles par déplacement d'ions
- Les ions circulent dans la pile.
- Les électrons circulent en dehors de la pile.
- Les bornes de la pile dépendent de la nature des 1/2 piles.
- La tension à vide dépend de la nature des 1/2 piles (couple et concentration)

III.3 Fonctionnement d'une pile

Le schéma annoté suivant décrit le fonctionnement de la pile d'équation :

- Il y a une oxydAtion à l'Anode : Zn → Zn²⁺ + 2 e⁻
- Il y a une reduCtion à la Cathode : Cu²+ + 2 e⁻ → Cu
- Le pont salin est constitué d'ions qui, en se déplaçant, assurent le passage du courant électrique. Les ions du pont salin se déplacent de manière à assurer l'électroneutralité des électrolytes.
- Les plaques de métal sont appelées les électrodes. La pile convertit l'énergie chimique en énergie électrique.
- On appelle tension à vide E, la tension aux bornes de la pile lorsqu'elle ne débite aucun courant.

On écrit le bilan suivant pour cette pile : $Cu^{2+}_{(aq)} + Zn_{(s)} \rightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$

III.4 Grandeurs caractéristiques d'une pile

Lorsque le quotient de réaction Qr, correspondant à l'équation de fonctionnement de la pile, est égal à la constante d'équilibre k de la réaction, l'équilibre est atteint, la pile ne débite plus de courant. Elle est complètement déchargée. Si Qr = k alors l = 0

La capacité électrique d'une pile est égale à la quantité maximale Q_{max} de charge électrique quelle peut fournir à un circuit avant d'être complètement déchargée :

$$Q_{\text{max}} = I.\Delta t = n(e^{-}).N_A.e$$

Q_{max} : capacité de la pile en coulomb (C)

I : intensité du courant dans le circuit en ampère (A)

 Δt : durée de fonctionnement de la pile en seconde (s)

n(e⁻): quantité maximale d'électrons échangée en mole avec le circuit

 $N_A = 6,02x10^{23} \text{ mol}^{-1}$, nombre d'Avogadro

e =1,60x10⁻¹⁹ C : charge élémentaire en coulomb(C)

<u>Remarque</u>: on peut utiliser également le Faraday, noté, F qui correspond à la quantité de charge électrique fournie par mole d'électrons:

```
1 F = N<sub>A</sub>x e = 6,02x10<sup>23</sup> mol<sup>-1</sup>x1,60x10<sup>-19</sup> C = 9,65x10<sup>4</sup> C.mol<sup>-1</sup>

Q_{max} = I.\Delta t = n(e^{-}).N_{A}.e = n(e^{-}) x F
```

<u>Exercice</u>: On réalise une pile à partir des couples oxydant-réducteur Zn^{2+} / Zn et Ni^{2+} / Ni . Chaque solution a pour volume V = 100 mL et la concentration initiale en ion positif vaut c = 0,05 mol.L⁻¹. Les métaux constituent les réactifs en excès. L'équation chimique de la réaction est :

$$Ni^{2+}_{(aq)} + Zn_{(s)} \longrightarrow Zn^{2+}_{(aq)} + Ni_{(s)}$$

La constante d'équilibre vaut $K = 10^{18}$.

On fait débiter la pile dans un conducteur ohmique

a) Comment varie la concentration des ions positifs dans chaque bêcher?

En déduire l'évolution du quotient de réaction Q_r.

- b) La réaction étant considérée comme totale, calculer l'avancement maximal x_{max} de la réaction.
- c) Quelle relation existe-t-il entre x_{max} et la quantité de matière d'électrons qui ont circulé ? En déduire la capacité Q_{max} de la pile.

Donnée: 1 F = $9,65x10^4$ C.mol⁻¹

III.5 Quelques oxydants et réducteurs usuels

- Pour optimiser les piles, il est nécessaire de trouver des métaux très réducteurs cédant facilement des électrons. Ces métaux appartiennent généralement à la colonne I (métaux alcalins) et à la colonne II (métaux alcalino-terreux) du tableau périodique. Ils peuvent perdre respectivement 1 ou 2 électrons.
- Les principaux oxydants sont les corps simples correspondant aux éléments situés à droite du tableau périodique des éléments (O₂, Cl₂, ...).